Activity recognition on streaming sensor data

نویسندگان

  • Narayanan Chatapuram Krishnan
  • Diane J. Cook
چکیده

Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerometer vs. Electromyogram in Activity Recognition

Activity recognition; Wearable sensor; Acceleration; Electromyogram; Unseen activities In this study, information from wearable sensors is used to recognize human activities. Commonly the approaches are based on accelerometer data while in this study the potential of electromyogram (EMG) signals in activity recognition is studied. The electromyogram data is used in two different scenarios: 1) r...

متن کامل

Leveraging Smartphone Sensor Data for Human Activity Recognition

Using smartphones for human activity recognition (HAR) has a wide range of applications including healthcare, daily fitness recording, and anomalous situations alerting. This study focuses on human activity recognition based on smartphone embedded sensors. The proposed human activity recognition system recognizes activities including walking, running, sitting, going upstairs, and going downstai...

متن کامل

A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence

This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...

متن کامل

Recurrent Transformation of Prior Knowledge Based Model for Human Motion Recognition

Motion related human activity recognition using wearable sensors can potentially enable various useful daily applications. So far, most studies view it as a stand-alone mathematical classification problem without considering the physical nature and temporal information of human motions. Consequently, they suffer from data dependencies and encounter the curse of dimension and the overfitting iss...

متن کامل

Real-Time Recognition of Action Sequences Using a Distributed Video Sensor Network

In this paper, we describe how information obtained from multiple views using a network of cameras can be effectively combined to yield a reliable and fast human activity recognition system. First, we present a score-based fusion technique for combining information from multiple cameras that can handle the arbitrary orientation of the subject with respect to the cameras and that does not rely o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pervasive and mobile computing

دوره 10 Pt B  شماره 

صفحات  -

تاریخ انتشار 2014